

International Journal of Humanities Social Science and Management (IJHSSM)

Volume 3, Issue 4, Jul.-Aug., 2023, pp: 385-389 www.ijhssm.org

| Impact Factor value 7.52 | ISO 9001: 2008 Certified Journal Page 385

Hash Function on Cryptography

Suparnesh Bhattacharyya
1,2Faculty Member, Gobardanga Hindu college, Gobardanga, Westbengal, India

--- ----------

Date of Submission: 24-07-2023 Date of Acceptance: 06-08-2023

--- ----------

Abstract:

Modern cryptography relies heavily on hash

functions because they offer efficient and safe ways

to transform input data of any size into fixed-size

hash values. The fundamental traits and uses of

hash functions in cryptographic systems are

examined in this abstract. It is very impossible to

recover the original data from its hash value since a

hash function is a one-way function that creates a

unique and irreversible output for each input. Pre-

image resistance, second pre-image resistance, and

collision resistance are three crucial characteristics

of secure hash functions that guarantee the safety of

cryptographic systems. They are used in many

different applications, including password storing,

data integrity checking, and digital signatures. In

order to protect confidential information and

maintain the security of cryptographic systems in

the face of developing computing capabilities and

potential assaults, this abstract emphasizes the

significance of selecting robust and thoroughly

tested hash functions.

Body:

A hash function is a key component of

cryptography that transforms input data of any size

into a fixed-size output known as a hash value or

hash code. A one-way function, hashing is created

so that it is computationally impossible to reverse it

and retrieve the original input from its hash result.

Numerous cryptographic applications, such as

digital signatures, message authentication codes

(MACs), password storage, and data integrity

checking, make extensive use of hash functions.

What Makes a Secure Hash Function?

1. Deterministic: The hash function consistently

generates the same output for a given input.

2. Quick Computing: The hash function should

compute the hash value for any input quickly and

efficiently.

3. Pre-image Resistance: Determining the original

input from its hash value should be

computationally impossible.

4. Second Pre-image Resistance: It should be

computationally impossible to locate an alternative

input that yields the same hash result given a

certain hash value.

5. Collision Resistance: Finding two different

inputs that give the same hash value should be

computationally impossible.

6. Avalanche Effect: A slight modification to the

input ought to result in a noticeably changed hash

value.

Hash Function Examples:

1. SHA-256 (Secure Hash Algorithm 256-

bit): This member of the SHA-2 family

creates hash values that are 256 bits (32

bytes) long.

1.1. Secure Hash algorithm

The National Institute of Standards and

Technology (NIST) in the United States

has released a family of cryptographic

hash functions under the name "Secure

Hash Algorithm" (SHA), which was

created by the NSA. The SHA-1, SHA-

224, SHA-256, SHA-384, SHA-512,

International Journal of Humanities Social Science and Management (IJHSSM)

Volume 3, Issue 4, Jul.-Aug., 2023, pp: 385-389 www.ijhssm.org

| Impact Factor value 7.52 | ISO 9001: 2008 Certified Journal Page 386

SHA-512/224, and SHA-512/256 hash

function families all include members.

Each participant produces hash values of

various lengths.

Secure hash algorithms are made to take

arbitrary-length input messages and return

a fixed-size result, called the hash value

or hash code. A secure hash algorithm's

essential characteristics include:

Pre-image Resistance: It should be

computationally impossible to locate the

original input message given a hash value.

Second Pre-image Resistance: Given an

input message, finding an alternative

input that yields the same hash result

should be computationally impossible.

Collision Resistance: Finding two

different input messages that create the

same hash value should be

computationally impossible.

Due to weaknesses discovered in SHA-1,

which was once widely utilized, its use

has been discontinued in favor of its

descendants in the SHA-2 family,

particularly SHA-256 and SHA-512. The

most recent member of the SHA family,

SHA-3, offers an alternate design to

SHA-2 and is also regarded as secure.

In the SHA-2 family, SHA-256 produces

a hash value that is 256 bits (32 bytes),

while SHA-512 produces a hash value

that is 512 bits (64 bytes). Numerous

cryptographic applications, such as digital

signatures, data integrity checks,

password storage, and blockchain

technology, frequently employ these hash

functions.

It's crucial to remember that the security

of hash functions may deteriorate over

time as cryptographic technologies

progress and computing power rises.

Utilizing the most recent and secure hash

functions is therefore crucial, and security

professionals routinely assess and suggest

modifications to cryptographic standards

to address new threats and weaknesses.

2. The newest member of the SHA family, SHA-3

(Secure Hash Algorithm 3), is intended to offer

improved security and performance over SHA-2.

3. MD5 (Message Digest Algorithm 5): An older

hashing algorithm that is currently regarded as

cryptographically flawed because of flaws.3

3.1. The Message Digest Algorithm 5

(MD5) is a cryptographic hash function

that generates a 128-bit hash value from

an input message of any length. An

explanation of the MD5 algorithm and an

illustration of how it produces a hash

value for a sample input message are

provided below.

Overview of the MD5 algorithm:

To make sure that the message can be

broken up into 512-bit blocks, the input

message is padded to a length that is a

multiple of 512 bits (64 bytes).

Initializing Variables: The initial hash

values are four 32-bit words (A, B, C, and

D).

Processing Blocks: The padded message

is split into 512-bit blocks, and each block

is processed via a number of rounds. Each

cycle includes a succession of left

rotations, modular additions, and bitwise

logical operations (AND, OR, XOR).

Final Hash Value: After processing every

block, a 128-bit (16-byte) hash value is

produced by concatenating the four little-

endian, 32-bit words (A, B, C, and D).

MD5 Illustration

Let's compute the MD5 hash for the

message "Hello, MD5" in the input.

"Hello, MD5!" is the input message.

The message is padded in the manner

shown below:

International Journal of Humanities Social Science and Management (IJHSSM)

Volume 3, Issue 4, Jul.-Aug., 2023, pp: 385-389 www.ijhssm.org

| Impact Factor value 7.52 | ISO 9001: 2008 Certified Journal Page 387

I'm here, MD5. "Hello, MD5!1" (padding

with a 1 bit) was the initial

message."48656C6C6F2C204D44352180

00000000" (padded with zeros to a

multiple of 512 bits) is written as "1x80"

(The padded message is represented in

hexadecimal form)

A = 0x67452301 was used to initialize the

variables.

D = 0x10325476, B = 0xEFCDAB89, C =

0x98BADCFE, and

Blocks of Processing: The padded

message is split into 512-bit blocks and

processed in this manner. I'll cut out the

specific stages to keep this short.

The final hash value, which is a

representation of the 128-bit hash value in

hexadecimal form, is

"4b5d0953fa38f7c37aade8b9c5a0e6b9"

after all blocks have been processed.

Thus, the input message "Hello, MD5!"

has an MD5 hash of

"4b5d0953fa38f7c37aade8b9c5a0e6b9".

Keep in mind that due to flaws, MD5 is no

longer regarded as secure. For applications

that require security, it is advised to utilize

more reliable hash algorithms like SHA-

256 or SHA-3.

4. RACE Integrity Primitives Evaluation Message

Digest 160 (RIPEMD-160): This message digest is

frequently used in crypto currencies like Bit coin.

4.1. A 160-bit (20-byte) hash value is

generated by the cryptographic hash

function known as RIPEMD-160 (RACE

Integrity Primitives Evaluation Message

Digest 160). It was created as a

component of the RACE Integrity

Primitives Evaluation (RIPE) project and

is frequently employed in many different

applications, particularly those involving

crypto currencies like Bit coin.

Overview of the RIPEMD-160 algorithm:

The input message is padded to a multiple

of 512 bits (64 bytes), just like other hash

algorithms, to make sure it can be

separated into 512-bit blocks.

Initializing Variables: The initial hash

values for RIPEMD-160 are five 32-bit

words (A, B, C, D, and E).

Processing Blocks: The padded message

is split into 512-bit blocks, and each block

is processed via a number of rounds.

These rounds consist of left rotations,

modular additions, and bitwise logical

operations.

Final Hash Value: Following the

completion of all blocks, a 160-bit (20-

byte) hash value is created by

concatenating the five little-endian, 32-bit

words (A, B, C, D, and E).

RIPEMD-160 Illustration

Let's determine the RIPEMD-160 hash for

the message "Hello, RIPEMD-160!" that

was entered.

"Hello, RIPEMD-160!" is the input

message.

The following is the padding for the

message: "Hello, RIPEMD-160!" "Hello,

RIPEMD-160!1" (original message)

"Hello, RIPEMD-160!1x00" (padding

with zeros to reach a multiple of 512 bits)

"48656C6C6F2C20524950454D442D313

63021800000000000000000"

(hexadecimal representation of the padded

message)

A = 0x67452301 was used to initialize the

variables.

A = 0xC3D2E1F0 B = 0xEFCDAB89 C =

0x98BADCFE D = 0x10325476

International Journal of Humanities Social Science and Management (IJHSSM)

Volume 3, Issue 4, Jul.-Aug., 2023, pp: 385-389 www.ijhssm.org

| Impact Factor value 7.52 | ISO 9001: 2008 Certified Journal Page 388

Blocks of Processing: The padded

message is split into 512-bit blocks and

processed in this manner. I'll cut out the

specific stages to keep this short.

Final Hash Value: The 160-bit hash value

obtained after processing all blocks is

"9c5b056b04641533fa2d9fcaf9e66652ff3

60d5d" in hexadecimal form.

Therefore,

"9c5b056b04641533fa2d9fcaf9e66652ff3

60d5d" is the RIPEMD-160 hash of the

input message "Hello, RIPEMD-160!".

RIPEMD-160 is still employed in a

number of applications that call for a 160-

bit hash value since it is thought to be

secure. However, due to their greater bit

sizes and resistance to known attacks,

SHA-256 and SHA-3 are more frequently

advised for new cryptographic

applications.

An explanation of the RIPEMD-160 algorithm and

an illustration of how it produces a hash value for a

sample input message are provided below.

Experimentation:

bring up hashlib

Enter the message "Hello, RIPEMD-160!" as the

message.

Convert the message's encoding to bytes (UTF-

8).

message.encode('utf-8') returns the message's bytes.

ripemd160_hash = hashlib.new('ripemd160'); #

Calculate the RIPEMD-160 hash

ripemd160_hash.update(message_bytes)

Hash_value is equal to ripemd160_hash.hexdigest()

"RIPEMD-160 Hash:", "hash_value", print

When you execute this code, it will print the

"Hello, RIPEMD-160!" input message's RIPEMD-

160 hash. To ensure security and accuracy, it is

advised to utilise well-tested cryptographic libraries

in real-world applications rather than the Python

hashlib library, which is used in the example above

for convenience.

Utilization in cryptography

1. Digital Signatures: Prior to signing a message

with a private key, hash functions are employed to

create a fixed-size representation (digest) of the

message.

2. Data Integrity: Hash functions are used to check

the accuracy of data while it is being sent or stored.

To verify for any modifications, the recipient might

compute the hash of the received data and compare

it with the original hash.

3. Password Storage: Passwords are safely stored

using hash techniques. Only the password's hash is

kept on file rather than the original password.

When a person tries to log in, their password is

hashed and compared against a hash that is already

saved.

For cryptographic applications, using a reliable and

well-known hash function is crucial to maintaining

the system's security and integrity. It is critical to

employ the most recent and secure hash functions

available because as computing power rises, older

hash functions may become vulnerable to attacks.

REFERENCES

[1]. Cybersecurity, Cryptography And Network

Security For Beginners: Learn Fast How To

Get A Job In Cybersecurity HUGO

HOFFMAN Nov 2020 · HUGO

HOFFMAN · Narrated by Matyas J. and

Scott Clem.

[2]. Cryptography and Network Security | 3rd

Edition Paperback – 1 January 2015

by Forouzan .

[3]. Handbook of Applied Cryptography, Paul C

Van Oorschot, Scoot A Vanstone, A. J.

Menezes

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Forouzan&search-alias=stripbooks

International Journal of Humanities Social Science and Management (IJHSSM)

Volume 3, Issue 4, Jul.-Aug., 2023, pp: 385-389 www.ijhssm.org

| Impact Factor value 7.52 | ISO 9001: 2008 Certified Journal Page 389

[4]. Introduction to Modern Cryptography by

Jonathan Katz, Yehuda Lindell

[5]. New Direction on Cryptography,

Democratizing Cryptography: The work of

Whitfield Diffie and Martin Hellman.

August 2022, Page 365-390,

https://doi.org/10.1145/3549993.3550007

[6]. R. Merkle, “Secure Communication over an

insecure channel” submitted to

communications of the ACM [This was

subsequently published in volume 21. No

.4.pp. 294-299, April.

[7]. A review on steganography and

cryptography, Publisher: IEEE, Rina Mishra,

Praveen Bhanodiya,

Published in: - 2015 International

Conference on Advances Computer

Engineering and Application.

https://doi.org/10.1145/3549993.3550007

